Efficient Spam Detection using Single Hidden Layer Feed Forward Neural Network
نویسندگان
چکیده
1 Head and Associate Professor, Dept. of Computer Science, Vellalar College for Women, Erode, Tamilnadu, India 2 Research Scholar, Department of Computer Science, Vellalar College for Women, Erode, Tamilnadu, India ---------------------------------------------------------------------***--------------------------------------------------------------------Abstract Recent development in social media, which is one of the crucial communication tools owning to wide spreading of internet technologies. On social network sites, spammers frequently cover themselves by creating fake accounts and hijacking normal user account for personal gain. In today’s era everybody is in online and use social network sites for interaction to gain knowledge for business purpose, studies, politics and many more. But along with positive approaches, it increases the spammers who continuously expose malicious behavior, which leads to great misunderstanding and inconvenience on users social activities. Apart from email, SMS, Links, spammers in social media behave like normal users and they continue to change their spamming strategies to fool non-spam systems. This kind of spam can contribute to degrade the quality of real time search engines unless mechanisms to fight and stop spammers.
منابع مشابه
STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کاملSingle-hidden-layer feed-forward quantum neural network based on Grover learning
In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward ne...
متن کاملComparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
متن کاملOptimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
متن کاملPrediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...
متن کامل